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Industrial context (1/2)

Nuclear safety
I Thermally-constrained metallic components: with aging, possible formation of

cracks (stress corrosion cracking)

I Non-invasive detection of shallow flaws: based on eddy current testing (ECT)

Figure: One of the 4 steam generators of an EPR plant (25m high, 510 tons).
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Industrial context (2/2)

Numerical simulation of ECT

I Forward simulator:employed to calibrate/qualify ECT probes (make the
measurements fit the simulations)

I Inverse simulator: employed to unravel the anatomy of flaws (make the
simulations fit the measurements)

Forward model
Find e : Ω→ C3 s.t.

curl(µ
−1

curl e) + iωσe = −iωj in Ω,

div
(
εe
)

= 0 in Ω
c
c ,

e×n = 0 on ∂Ω,

with electric conductivity

σ =

{
0 in Ωc

c

σc in Ωc
.

Figure: Sketch of a prototypical ECT setting.

Main numerical challenges

I Accurate approximation of the control signal  high-order/enriched methods

I Modeling of the defects and 3D (re)meshing  nonconforming/general meshes
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Toy model

Let D ⊂ R3 denote an open, bounded, connected, Lipschitz polyhedral domain. Recall
the definition of Betti numbers:

I β0(D) = 1 (number of connected components of D) and β3(D) = 0;

I β1(D): number of tunnels crossing through D;
I β2(D): number of voids encapsulated into D.

Figure: Betti numbers: (1,1,0,0). Figure: Betti numbers: (1,0,1,0).

Magnetostatics
Given a current density j : D → R3 satisfying div j = 0 in D and j·n = 0 on ∂D,
find the magnetic field h : D → R3 such that

curlh = j in D,
div b = 0 in D,
h×n = 0 on ∂D,

(Pτ )

with constitutive law b = µh, where µ ∈ R?+ is the magnetic permeability.
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Well-posedness

Adjoint de Rham complex

{0} 0−−−−→ H1
0 (D)

− grad−−−−→H0(curl;D)
curl−−−−→H0(div;D)

− div−−−−→ L2(D) 0−−−−→ {0}

with homology spaces:

I H3 := Ker(grad)/Im(0) = {0} of dimension β3(D) = 0;

I H2 := Ker(curl)/Im(grad) =H0(curl
0;D) ∩H(div0;D) of dimension β2(D);

I H1 := Ker(div)/Im(curl) =H(curl0;D) ∩H0(div
0;D) of dimension β1(D);

I H0 := Ker(0)/Im(div) of dimension β0(D) = 1.

Fredholm alternative for (Pτ )
Recall that the source current density satisfies j ∈H0(div

0;D).

I If β1(D) = β2(D) = 0, there exists a unique solution to (Pτ ).

 β1(D) = 0  H0(div0;D)= curl
(
H0(curl;D)

)
 existence

 β2(D) = 0  H0(curl0;D) ∩H(div0;D) = {0}  uniqueness

I If β1(D) > 0 or/and β2(D) > 0, a necessary condition of existence of a solution
to (Pτ ) is j ⊥ H1, then the solution is unique up to an element of H2.
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Variational viewpoint

Weak form of (Pτ ) [Kikuchi; 89]

Given j ∈H0(div
0;D), j ⊥ H1, find (h, p) ∈H0(curl;D)×H1

∂D(D) s.t.
∫
D

curlh· curlv + µ

∫
D
v· grad p =

∫
D
j· curlv ∀v ∈H0(curl;D),

−µ
∫
D
h· grad q = 0 ∀q ∈ H1

∂D(D).

(Pτ )

Remark that p ≡ 0 (test with v = grad p ∈ grad
(
H1

∂D(D)
)
⊂H0(curl0;D)).

Weber inequalities

I Weber inequalities are named after Christian Weber [Weber; 80].

I They are generalizations of the Poincaré inequality to the case of vector fields
belonging to H(curl;D) ∩H(div;D)

(
⊃H1(D)

)
, and featuring on ∂D either

vanishing tangential trace (first) or vanishing normal trace (second).

I Ex.: First Weber inequality for β2(D) = 0: ∀v ∈H0(curl;D) ∩H(div;D),

‖v‖0,D . ‖ curlv‖0,D + ‖div v‖0,D.
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Polyhedral toolbox

Let (Th,Fh) be a polyhedral mesh of D ⊂ R3, and ` ∈ N a given polynomial degree.

Cell-wise polynomial decomposition

For T ∈ Th, let xT be some point inside T such that T contains a ball centered at
xT of radius comparable to hT . There holds

P`(T )3 =: P`(T ) = G`(T )⊕P`−1(T )×(x− xT ),

where G`(T ) := grad
(
P`+1(T )

)
, and the polynomial space P`−1(T )×(x− xT ) is

the so-called Koszul complement.

Face-wise polynomial decomposition

For F ∈ Fh, let xF be some point inside F such that F contains a disk centered at
xF of radius comparable to hF . There holds

P`(F )2 =: P`(F ) = R`(F )⊕ P`−1(F )(x− xF ),

where R`(F ) :=
(
gradF

(
P`+1(F )

))⊥, with z⊥ the rotation of angle −π
2
of z in

the oriented hyperplane HF , and P`−1(F )(x− xF ) is the Koszul complement.

 For all T ∈ Th and F ∈ FT , there holds G`(T )|F×nF = R`(F ).
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H(curl)-like hybrid space

For ` ∈ N, we consider the hybrid space of unknowns

X`
h :=

{
vh :=

(
(vT )T∈Th , (vF,τ )F∈Fh

)
:

vT ∈ P`(T ) ∀T ∈ Th
vF,τ ∈R`(F ) ∀F ∈ Fh

}
,

endowed with the semi-norm

|vh|
2
curl,h :=

∑
T∈Th

(
‖ curlvT ‖20,T +

∑
F∈FT

h−1
F

∥∥π`R,F

(
vT |F×nF

)
− vF,τ

∥∥2
0,F

)
.

For vh ∈X`
h, we let vh ∈ P`(Th) be such that vh|T := vT for all T ∈ Th.

Is |·|curl,h a norm on a div-free subset of X`
h,0 :=

{
vh ∈ X

`
h | vF,τ ≡ 0 ∀F ∈ F∂

h

}
?

First hybrid Weber inequality (for β2(D) = 0) [Chave, Di Pietro, SL; 22]

For any vh ∈X`
h,0 s.t.

∫
D
vh·grad q = 0 for all q ∈ H1

0 (D),

‖vh‖0,D . |vh|curl,h.
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HHO method

Let k ∈ N? be a given polynomial degree. Define

Ah

(
uh,vh

)
:=

∫
D

curlhuh·curlhvh

+
∑

T∈Th

∑
F∈FT

h
−1
F

∫
F

[π
k
R,F

(
uT |F×nF

)
− uF,τ ]·[πk

R,F

(
vT |F×nF

)
− vF,τ ],

Bh

(
uh, qh

)
:=

∫
D
uh·Gk

h(q
h

),

Nh

(
rh, qh

)
:=

∫
D
rhqh +

∑
T∈Th

∑
F∈FT

hF

∫
F

rF qF .

Discrete problem (for β2(D) = 0)

Find
(
hh, ph

)
∈ Xk

h,0 × Y
k
h,0 such that

Ah

(
hh,vh

)
+ µBh

(
vh, ph

)
=

∫
D
j·curlhvh ∀vh ∈ X

k
h,0,

−µBh

(
hh, qh

)
+Nh

(
p
h
, q

h

)
= 0 ∀q

h
∈ Y k

h,0.

The discrete problem has a unique solution satisfying(
|hh|

2
curl,h + ‖p

h
‖20,h

)1/2
≤ ‖j‖0,D,

where ‖q
h
‖20,h := Nh

(
q
h
, q

h

)
.
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Convergence

Energy-error estimate [Chave, Di Pietro, SL; 22]

Assume that j ∈ curl
(
H0(curl;D)

)
, and that β2(D) = 0. Suppose, in addition, that

h ∈H0(curl;D) further satisfies h ∈Hk+1(Th). Then,

(
|hh − I

k
h(h)|2curl,h + ‖p

h
‖20,h

)1/2
.

 ∑
T∈Th

h
2k
T |h|

2
k+1,T

1/2

.

I convergence of order k ≥ 1 of ‖curlhhh − curlh‖0,D

I observed convergence of order k + 1 of ‖hh − h‖0,D for D convex

I in practice, local elimination of all (magnetic and pressure) cell unknowns

I in the matching tetrahedral case, Nh can be removed
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Numerical illustration

Academic test-case: D := (0, 1)3, with µ = 1 and exact solution

h(x, y, z) =
(
cos(πy) cos(πz), cos(πx) cos(πz), cos(πx) cos(πy)

)
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Figure: Relative energy-error (top row) and L2-error (bottom row) vs. meshsize h (left),
solution time in s (center), and #dof (right) on cubic meshes for k ∈ {1, 2, 3}.
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